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Abstract1

1. Predicting where crop pests and diseases can occur, both now and in the future under2

different climate change scenarios, is a major challenge for crop management. One3

solution is to estimate the fundamental thermal niche of the pest/disease to indicate4

where establishment is possible. Here we develop methods for estimating and displaying5

the fundamental thermal niche of pests and pathogens and apply these methods to6

Huanglongbing (HLB), a vector-borne disease that is currently threatening the citrus7

industry worldwide.8

2. We derive a suitability metric based on a mathematical model of HLB transmission9

between tree hosts and its vector Diaphorina citri, and incorporate the effect of tem-10

perature on vector traits using data from laboratory experiments performed at different11

temperatures. We validate the model using data on the historical range of HLB.12

3. Our model predicts that transmission of HLB is possible between 16◦ C and 33◦ C13

with peak transmission at ∼25◦ C. The greatest uncertainty in our suitability metric is14

associated with the mortality of the vectors at peak transmission, and fecundity at the15

edges of the thermal range, indicating that these parameters need further experimental16

work.17

4. We produce global thermal niche maps by plotting how many months each location is18

suitable for establishment of the pest/disease. This analysis reveals that the highest19

suitability for HLB occurs near the equator in large citrus-producing regions, such as20

Brazil and South-East Asia. Within the northern hemisphere, the Iberian peninsula21

and California are HLB suitable for up to 7 months of the year and are free of HLB22

currently.23

5. Policy implications. The thermal niche map indicates the places at greatest risk of24

establishment should the disease or pest enter these regions. This indicates where25
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surveillance should be focused to prevent establishment. Our mechanistic method can26

be used to predict new areas for HLB transmission under different climate change27

scenarios and is easily adapted to other vector-borne diseases and crop pests.28

1 Introduction29

The quality and quantity of yields for many crop systems can be significantly reduced by30

pests and disease. For example, the wheat aphid reduces yields of grain crops (Merrill et al.,31

2009), Pierce’s disease vectored by the glassy-winged sharpshooter diminishes grape yields32

(Bruening et al., 2014), codling moth damages apple orchards (Rafoss & Sæthre, 2003), and33

Huanglongbing vectored by the Asian citrus psyllid decimates citrus crops (da Graça et al.,34

2016). The pests and/or vectors of disease are often small arthropods that are sensitive to35

environmental conditions, including temperature and humidity (Mordecai et al., 2013; Tsai36

et al., 2002). Therefore, predicting when and where these pests or disease vectors will occur,37

and hence potential loss of crops, is often highly dependent on environmental conditions, and38

thus a changing climate. Some crops are already experiencing reduced yields associated with39

climate change (Challinor et al., 2014), an undesired outcome that could be exacerbated if40

it coincides with increases in pest populations or disease transmission (Cammell & Knight,41

1992). However, predicting realistic impacts of climate change on living systems, such as42

pests and disease vectors, is a major challenge in ecology (Rohr et al., 2011).43

With the pressing need to understand the effects of climate change on food production,44

we provide a method to estimate and display the fundamental thermal niche of a crop pest45

or disease. The fundamental thermal niche is the set of temperatures under which popu-46

lations of a species would be expected to persist, all else being equal (Angilletta & Sears,47

2011). It can be used to predict where pests or disease can currently establish outside of48

their existing range, as well as predict future locations of pest and disease outbreaks associ-49

ated with a changing climate. This, in turn, can facilitate targeting risk-based surveillance50
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and prophylactic interventions. Consequently, our method for estimating the fundamental51

thermal niche of a crop pest or disease should be an important tool for current and future52

agricultural planning.53

In this study, we borrow approaches established for human vector-borne diseases (Morde-54

cai et al., 2017, 2013) to simultaneously estimate the fundamental thermal niche of a crop55

pathogen and its insect vector. More specifically, we first develop a mechanistic model of56

disease transmission where the parameters of the model are fitted to data from temperature-57

dependent laboratory studies. A metric derived from this model is then used to indicate how58

suitable locations are based on average monthly temperatures. Finally, we validate the model59

by assessing how well it corresponds with observational data on known disease occurrence60

(Mordecai et al., 2013). Additionally, we use Bayesian inference to incorporate uncertainty61

arising from the use of multiple data sources and uncertainty in temperature dependence of62

each of the vector’s life history traits to estimate the overall uncertainty in the suitability63

metric (Johnson et al., 2015). Our method allows for the inclusion of the intrinsic reasons64

behind why an organism is found where it is and the potential interplay when different traits65

of organisms respond disparately to changes in extrinsic factors (Angilletta & Sears, 2011).66

To develop our methods, we leverage data on the effect of temperature on bacteria67

of citrus that cause the disease Huanglongbing (HLB, or citrus greening) and their pri-68

mary vector, the Asian Citrus Psyllid (Diaphorina citri Kuwayama; ACP). Citrus is a69

commercially-important crop grown throughout the world including South-East Asia, Aus-70

tralia, the Mediterranean, South Africa, South and Central America and southern states71

of USA (FAO, 2017). HLB is a devastating disease of citrus trees that has spread globally72

from its origin in Asia (Bové, 2006). It affects the quality and quantity of citrus fruit on a73

tree, for all citrus species, leading to misshapen fruit, bitter taste, and fruit dropping early74

(Bové, 2006). The symptoms can be difficult to detect, and may take months to appear on75

a tree, but include chlorosis of leaves with eventual dieback and death of the tree (Gottwald,76

2010; Lee et al., 2015). HLB is caused by three bacteria: Candidatus Liberibacter asiaticus77
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(CLas), Candidatus Liberibacter africanus (CLaf), and Candidatus Liberibacter americanus78

(CLam) (Bové, 2006). The predominant bacterium, and the focus in this study, is CLas,79

which occurs in all HLB-infected areas (Gottwald, 2010) apart from South Africa (where80

CLaf is present). CLam occurs primarily in South America alongside CLas, and is responsi-81

ble for only a minority of cases there (Gottwald, 2010). Transmission of both the CLas and82

CLam bacteria occurs due to feeding of the ACP (Grafton-Cardwell et al., 2013; Hall et al.,83

2013). ACP and HLB have spread throughout the world mostly via worldwide trade (Byrne84

et al., 2018), and now exist in nearly all citrus producing regions (Hall et al., 2013). The85

cost of this disease to the citrus industry is huge, and interventions to prevent its spread86

and reduce the deleterious effects of the disease are, for the most part, ineffective (Hodges87

& Spreen, 2012). Here, we map the suitability metric of HLB around the world to provide88

a planning tool for citrus growers, whilst the method itself is applicable to all crop diseases89

spread by vectors or to crop pests.90

2 Methods91

2.1 Formulation of S(T )92

To determine the thermal niche of citrus greening, we characterize the possibility of an93

introduction of citrus greening persisting at a local level, for different locations around the94

world. We use an estimate of the basic reproductive number R0. When R0 > 1, the95

disease is likely to spread and lead to an epidemic, whereas if R0 < 1, the disease will die96

out. We determine an equation for R0 for the spread of citrus greening on a single grove97

by using a previously developed model for citrus greening (Taylor et al., 2016). In this98

mechanistic model, trees and psyllids are split into different compartments based on their99

disease status. Trees are Susceptible, Asymptomatic (infected, but no symptoms) or Infected100

(with symptoms). Psyllids are Susceptible, Exposed or Infected (Fig 1). Death of trees and101

roguing (removing trees from a grove due to high levels of infection) are included, as well102
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as replacement of all removed trees with susceptible trees. For full details of this model,103

see Supplementary Info S1. The basic reproductive number R0 is then calculated as (Taylor104

et al., 2016):105

R0 =

(
FEpEADPa

2bcF

Nµ3

(
3ϕ

3ϕ+ µ

)3

e−rτ

(
1

γ + r
+

γ

(γ + r)r1

))1/2

. (1)

This equation for R0 can be understood by considering how disease propagates through106

the citrus system. The number of psyllids in the population is determined by:107

V =
FEpEADPF

µ2
(2)

which includes the fecundity of adult psyllids (FE), the probability of egg to adult survival108

(pEA), the development rate from egg to adult (DP ), the mortality rate of adult psyllids109

(µ) and the amount of trees flushing (F ) within the grove which varies throughout the year.110

These adult psyllids are in contact with the single infected tree based on the bite rate (a)111

with a probability of transmission from tree to psyllid (c). The psyllids undergo an extrinsic112

incubation period before becoming infectious given by rate (ϕ). But they can die during this113

time which leads to the term
(

3ϕ
3ϕ+µ

)3
for the number of psyllids that survive the extrinsic114

incubation period. These infectious psyllids are in contact with susceptible trees (total N),115

once again with bite rate a and a probability of transmission from psyllid to tree (b). The116

term e−rτ represents the proportion of trees that survive the incubation period (τ) to become117

infectious. The final combined term in the equation determines how long a tree is infectious,118

during both the asymptomatic stage and the infected stage, and includes the rate at which119

trees develop symptoms (γ), the death rate of asymptomatic trees (r) and the death rate of120

infected trees (r1).121

We define our measure of thermal suitability for HLB as the vector/infection components122
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Figure 1: A schematic of the model for HLB transmitted between trees and psyllids. Trees are Susceptible,
Asymptomatic, or Infected. Psyllids are Susceptible, Exposed or Infected. Dead and rogued trees are
replaced by susceptible trees. Black arrows show the transitions between the compartments. Orange dashed
arrows show the necessary interactions between trees and psyllids to obtain transmission.

of R0 that depend on temperature only. That is, the suitability, S(T ), is given by:123

S(T ) = C

(
FE(T )pEA(T )DP (T )

µ(T )3

)1/2(
3ϕ

3ϕ+ µ(T )

)3/2

, (3)

where C is a constant that scales the mean suitability to lie between 0 and 1. Thus, the suit-124

ability is zero when temperature is predicted to fully exclude transmission and 1 at maximal125

transmission. In the results, we will primarily focus on predictions based on two suitability126

regimes: a “permissive” thermal niche corresponding to temperatures where S(T ) > 0; and127

a “highly suitable” thermal niche corresponding to temperatures such that S(T ) > 0.75 (i.e.,128

the highest quartile of suitability).129
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2.2 Bayesian fitting of thermal traits in S(T )130

It has been widely recognized that performance traits of ectotherms, such as survival, repro-131

duction, and movement, exhibit unimodal responses to temperature (Amarasekare & Savage,132

2012; Dell et al., 2011). Following the approach introduced in Mordecai et al. (2013), we133

fit unimodal temperature responses to laboratory data for traits of the vector that appear134

in the equation for S(T ). These curves can then be inserted into the equation for S(T ) to135

determine how transmission depends upon temperature. As in Johnson et al. (2015), we take136

a Bayesian approach to fitting. Thus, we can quantify the uncertainty in the temperature137

relationship of individual components and explore the emergent uncertainty in S(T ) overall138

that is due to the uncertainty in the components. Complete details of the approach are139

presented in Supplementary Info S2.140

Here we focus on four psyllid traits for which there exists data across sufficient tem-141

peratures to quantify the responses: fecundity (FE); probability of egg to adult survival142

(pEA); average longevity (the inverse of the mortality rate, 1/µ); and the development rate143

of psyllids from eggs into adults (DP ). The majority of the data comes from Liu & Tsai144

(2000), which has a range of 15◦ C up to 30◦ C for all four parameters, with additional145

data at 10◦ C and 33◦ C for some of the parameters. Hall et al. (2011) and Hall & Hentz146

(2014) provide data on high and low extreme temperatures that prevent development of the147

psyllids and/or lead to mortality. However, Hall et al. (2011) also provide information on148

fecundity of female psyllids across a temperature range of 11◦ C to 41◦ C. We include both149

data sets for fecundity, and consider whether they generate different predictions. Hereafter,150

Liu & Tsai (2000) and Hall et al. (2011) will be referred to as LT00 and H11 respectively151

and, when referring to the S(T ) output created by either data set, LT00 S(T ) and H11 S(T )152

will be used.153

For all sets of data, we fit two functions to describe the mean relationship between the154

trait and temperature: quadratic, giving a symmetric relationship (f(T ) = qn(T − T0)(T −155

TM)); Brière, giving an asymmetric relationship (f(T ) = cT (T − T0)(T − TM)1/2, Brière156
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et al. (1999)). All responses were fitted using a Bayesian approach. After specifying the157

mean relationship, probability distributions appropriate to describe the variability around158

this mean were chosen, and priors specified (Supplementary Info S2). We chose priors to159

limit parameters for the minimum and maximum temperature thresholds to approximate160

known limits to psyllid survival. For instance, the prior on the thermal limits was set161

uniformly over the interval from 30◦ C-50◦ C to acknowledge that exposing psyllids to the162

very high temperatures kills them almost immediately, while being wide enough to allow the163

laboratory data primacy in the analysis. Priors for other parameters of the mean were chosen164

to be relatively uninformative but scaled appropriately for the response. Priors on variance165

parameters were typically also chosen to be relatively uninformative, although the precise166

specification varied due to differences in the scale of the responses and to improve mixing167

and convergence of the Markov Chain Monte Carlo sampling scheme. All responses were168

fitted in R (R Development Core Team, 2008) using the JAGS/rjags packages (Plummer,169

2003, 2013). After fitting both quadratic and Briére responses to each data set, the preferred170

response was chosen via Deviance Information Criterion (DIC) as implemented in rjags.171

Once samples of the posterior distributions of parameters for the preferred model were ob-172

tained, these were used to calculate the posterior samples of the response across temperature.173

Then, at each temperature the mean/median of the response and the 95% highest posterior174

density (HPD) interval were calculated. The posterior samples of each trait response were175

then combined to create samples from the overall response of S(T ) to temperature. As with176

the individual thermal responses, these posterior samples of S(T ) across temperature were177

used to calculate the mean and 95% HPD interval around the mean of S(T ).178

2.3 Uncertainty in response of S(T ) to temperature179

The uncertainty for each parameter in S(T ) is calculated using the variation in S(T ) at each180

temperature when all parameters, apart from the one of interest, are held constant at their181

mean posterior values for that temperature. We calculate the 2.5 and 97.5 quantiles of the182
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S(Tm) posterior distribution and plot the difference between the quantiles against Tm, where183

we use Tm to represent the temperature with all bar one parameter held at their mean values.184

We do this for values of Tm in our temperature range, and then for all parameters in S(T ).185

This method indicates which parameters have the greatest variation at each temperature186

and hence which parameters have the greatest uncertainty at that temperature. This allows187

us to know when our estimate of S(T ) is uncertain and which parameter is causing this.188

2.4 Mapping suitability across space189

To communicate the potential suitability of the world’s land surface for transmission of190

HLB, we mapped the months of suitability as a function of mean monthly temperatures. We191

used the WorldClim dataset (version 1.4, www.worldclim.org) (Hijmans et al., 2005), which192

corresponds to a climate period of 1960-1990, used to represent a long term period in the 20th193

Century; this appropriately represents the date range of the validation occurrence data, from194

1956 to 2014. Using this ’baseline’ long term climate data reduces any biases that may arise195

from recent warming signals mis-representing the earlier part of the validation data. We196

took the posterior mean S(T ) curves for the H11 and LT00 models across temperatures and197

extracted the temperatures corresponding to the top 25th percentile of the S(T ) curve (i.e.,198

S(T ) > 0.75, Supplementary Info S5) for the highly suitable thermal niche, and temperatures199

corresponding to the transmission limits (S(T ) > 0) for the permissive thermal niche (Ryan200

et al., 2015). These values were used with the climate models (§2.4.1) to determine, on201

average, the number of months each year that each pixel is either permissive or highly202

suitable.203

2.4.1 Climate models204

We mapped the suitability measures onto rasters of current mean monthly temperature data205

at 0.1◦ C intervals. Data were derived from WorldClim Version 1.4 dataset at 5 minute206

resolution (roughly 10km2 at the equator). The scaled suitability model was projected onto207
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the climate data using the ‘raster’ package (Hijmans, 2016) in R (R Development Core208

Team, 2008). R code for this step is supplied in Supplementary Info S7. Visualizations were209

generated in ArcMap. For each of the scenarios, we created global maps and insets for areas210

of citrus growing concern in the Northern Hemisphere: California, Florida, and the Iberian211

peninsula.212

2.5 Validation of suitability measure213

Narouei-Khandan et al. (2016) present spatially explicit data on locations with confirmed214

presence of the Asian citrus psyllid (ACP) or HLB (CLas form specifically). These are215

presence-only data, so we cannot examine how well our model partitions predictions be-216

tween suitable and unsuitable areas. Instead, we focus on a more qualitative assessment217

of model adequacy. For each location in the dataset, we calculate the number of months218

that the average temperature falls within the bounds of the permissive or the highly suitable219

thermal ranges of ACP from our model. If our model can adequately capture temperature220

conditions related to transmission and vector establishment, then most locations of HLB221

presence will have many months in the suitable range. We restrict ourselves to locations222

from the dataset that are not from mountainous regions (i.e. exclusion of ACP(n=26) and223

HLB(n=12) points) by removing those coinciding with named mountain ranges. This is224

because, at the spatial scale we use for climate layers, these areas tend to have much more225

true variation in temperature, leading to higher uncertainty in the temperature predictor226

than in other locations. This removal alleviates the risk of introducing bias in either warmer227

or colder directions.228
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3 Results229

3.1 Posterior distributions of thermal traits230

The probability of egg to adult survival (pEA) and longevity (1/µ) are both fitted best by231

quadratic curves, while development rate from egg to adult (DP ) is best fitted by a Briére232

curve (Fig 2). However, fecundity (FE) switches from a Briére to a quadratic depending on233

whether we use the data from Liu & Tsai (2000) or Hall et al. (2011) respectively (Fig 2D,234

E). The data sources also predict different upper thermal limits for fecundity: LT00 predicts235

no fecundity above 31◦ C, whereas fecundity is possible up to 41◦ C according to H11. Full236

posterior plots of the parameters are in Supplementary Info S3.237
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Figure 2: Psyllid trait data against temperature (◦ C) with the best fit plotted as a solid line and 95%
quantiles as dashed lines. In A, the probability of egg to adult survival (pEA); in B, the development rate
from egg to adult psyllid (DP ); in C, the longevity of adult psyllids (1/µ); in D, the fecundity of adult
psyllids (FE) with only the Liu & Tsai (2000) data used; and in E, the fecundity of adult psyllids (FE) with
only the Hall et al. (2011) data is used.
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3.2 Posterior distribution of S(T )238

The lower thermal bound of the posterior distributions of LT00 and H11 S(T ) are in agree-239

ment, predicted using the two different data sets for fecundity, although LT00 S(T ) has more240

uncertainty (Fig 3, Supplementary Info S4). The temperature at which the peak of S(T )241

occurs is also very closely aligned. However, the value of S(T ) at that peak temperature242

and the upper thermal limit are very different. When scaled so that the LT00 S(T ) has243

a maximum of 1, the peak of H11 S(T ) is 1.35 times larger. LT00 S(T ) is driven to 0 at244

approximately 31◦ C because fecundity is not possible for higher temperatures. However,245

H11 S(T ) still has transmission predicted up to 33◦ C.246

3.3 Sources of uncertainty in S(T )247

The uncertainty of each parameter on S(T ) is plotted against temperature as all other248

parameters are held constant at their means (Fig 4). We can use Fig 4 to understand what249

drives S(T ) at different temperatures, and therefore it indicates how best to affect S(T )250

at those temperatures, if the aim is intervention. In Fig 4A, fecundity (FE) is the main251

parameter driving variability in S(T ) during the range 15-20◦ C as well as when S(T ) is252

decreasing to 0 at 31◦ C. However, adult mortality (µ) is the main proponent of uncertainty253

during the mid to high temperatures of 20-30◦ C. In comparison, in Fig 4B, adult mortality254

(µ) leads to the most uncertainty over the whole temperature range. While adult fecundity255

is once again important at low temperatures, it is the development rate (DP ) that emerges256

as producing the most variability in S(T ) at high temperatures.257

3.4 Validation258

We present histograms of the number of months that the average temperature falls within259

the bounds of both the permissive or the highly suitable thermal ranges (Fig 5, based on the260

H11 model) at each location in the dataset from Narouei-Khandan et al. (2016).261
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Figure 3: Posterior distribution of S(T ) against temperature (◦ C) using data from Liu & Tsai (2000) (LT00,
in blue) and Hall et al. (2011) (H11, in pink). Mean S(T ) for both models is plotted using solid lines, 95%
credible intervals are plotted with dashed lines. Both are independently scaled so that their maximum is 1.

Most locations with HLB or ACP have permissive temperature ranges for at least six262

months of the year. Over 82% of locations are in the permissive range for nine or more263

months of the year, and more than 50% have permissive temperatures year round. Locations264

with year round highly suitable conditions account for 12% and 28% of records for HLB and265

ACP, respectively, and over 70% of locations have highly suitable conditions for 6 months266

or more. There are almost no locations with HLB or ACP present that the conditions are267

permissive for less than 3 months . Results based on the data by Liu & Tsai (2000) are268

similar, as are the results that include mountainous areas (see Supplementary Info S6).269
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Figure 4: The uncertainty of S(T ) propagated through each parameters’ relation to temperature. In (A)
uncertainty in LT00 S(T ) and in (B) uncertainty in H11 S(T ). This is produced based upon the posterior
of S(T ), holding all parameters constant at their predictive mean apart from the parameter of interest. The
2.5% and 97.5% quantiles of the resultant estimation of S(T ) are then calculated at each temperature and
the difference between these quantiles is plotted.

3.5 Thermal niche of HLB270

In Fig 6 and Fig 7, we present the mapped outputs of the permissive and highly suitable271

regions, respectively, for H11 S(T ). Similar maps for the LT00 S(T ) model are presented272

in Supplementary Info S8 and maps with the HLB and ACP validation points included273

are provided in Supplementary Info S9. Many locations in the Southern hemisphere are274

permissive for HLB all months of the year (Fig 6), including in South America and Southwest275

Asia where the disease is currently present. Australia and many countries in Africa, which276

are large citrus producing regions, are permissive for HLB all or many months of the year, but277

CLas HLB is not currently present. The insets highlight that southern Florida is permissive278

for HLB all months of the year, and for at least 7 months in the north. This is confirmed279

on the ground as HLB is present throughout the whole state of Florida. California and280

the Iberian peninsula have similar suitability profiles to each other, with up to 7 months281

permissive in the south of the Iberian peninsula, and up to 8 months at the very south of282
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Figure 5: The number of months that every location with current HLB or ACP presence is either permissive
or highly suitable according to our H11 S(T ) model. Top row: locations in the validation dataset where
HLB is present. Bottom row: locations in the validation dataset where ACP is present. We define permissive
suitability as S(T ) > 0 and high suitability as S(T ) > 0.75.

California. As expected, more northerly regions of the world, which are not suitable for283

growing citrus, are also not able to maintain ACP populations.284

The pattern for suitability is similar for the highly suitable map (Fig 7) but with lower285

numbers of months satisfying this stricter criteria. South America maintains year round high286

suitability for the disease across much of the continent. Similarly, Southwest Asia maintains287

suitability year-round, whereas Australia is reduced to 7 months or less across the country.288

California and the Iberian peninsula are highly suitable for 4-5 months of the year, whereas289

Florida is still highly suitable for up to 9 months each year.290
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Figure 6: The number of months a year that locations have permissive temperatures according to our H11
S(T ) model. Inset plots of California, Florida and the Iberian peninsula, respectively, are included. We
define permissive temperatures for suitability as S(T ) > 0. Locations in grey have zero months suitable for
HLB transmission.

4 Discussion291

In this paper we presented a model of suitability for a specific crop disease, HLB. This method292

of demonstrating duration of risk of potential disease emergence and transmission, as a func-293

tion of thermal suitability, has been successfully used for human vector-borne diseases such294

as dengue, Zika, and malaria (Mordecai et al., 2017, 2013). This climate-predictive mapping295

framework provides a tool for planning and intervention, and is adaptable to multiple sys-296

tems, including vector-borne diseases of crops and thermally sensitive crop pests. While we297

have demonstrated this approach for a coupled vector-pathogen system, and thus used R0298

as a starting point to create a transmission-based suitability metric, the method to create a299
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Figure 7: The number of months a year that locations have highly suitable temperatures according to our
H11 S(T ) model. Inset plots of California, Florida and the Iberian peninsula, respectively, are included. We
define highly suitable temperatures as S(T ) > 0.75. Locations in grey have zero months suitable for HLB
transmission.

fundamental thermal niche for invasive crop pests is readily possible using population models300

(in which R0 represents the likelihood of population persistence rather than disease persis-301

tence). Given the availability of rigorous laboratory experiments on the thermal responses of302

other crop pest or disease systems (Deutsch et al., 2008), this approach is broadly applicable303

to many systems.304

Our model outputs a suitability metric S(T ) for transmission of HLB dependent on tem-305

perature. Conditional on the data we use to parameterize S(T ), we predict that transmission306

can occur between 16◦ C and 30-33◦ C with peak transmission at approximately 25◦ C. While307

the lower bound and peak temperature predictions are similar regardless of which of the two308

fecundity data sets we use for parameterization, i.e., those from Hall et al. (2011) (H11) or309
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Liu & Tsai (2000) (LT00), the predicted upper limit of suitability of the peaks differ depend-310

ing on the data used (Fig 3). More specifically, the range is wider for the H11 data. Thus,311

based on the suitability index, there might be more areas strictly suitable for transmission if312

we assume the H11 data are more representative of psyllid populations in the field. Further-313

more, when we consider our uncertainty analysis, there are additional differences between314

the two data sources (Fig 4). The main uncertainty in the LT00 model arises from fecundity315

at lower temperatures and mortality for higher temperatures, whereas for the H11 model,316

mortality is the main driver of uncertainty overall. In both cases, mortality of ACP is the317

most important parameter when S(T ) is near its peak at 25◦ C. Together, these indicate318

that focus should be on further experimental understanding of mortality rates and fecundity319

near the edges of the thermal tolerances of psyllids to refine our estimates of the thermal320

niche.321

We use our suitability metric to predict regions which are permissive or highly suitable322

for HLB around the world. Our maps indicate that regions close to the equator have the323

greatest number of months permissive for HLB transmission, especially in South America,324

Africa and South East Asia. South America and South East Asia are, in particular, large325

citrus producing regions, and HLB is already present in both (Coletta-Filho et al., 2004;326

Garnier & Bové, 1996, 2000; Torres-Pacheco et al., 2013). The fact that HLB is not only327

permissive all 12 months of the year, but is actually highly suitable year-round, indicates328

the scale of the potential problem in those areas. However, the HLB epidemic in São Paulo329

State in Brazil, the major citrus producing region in the country, is successfully managed330

in those areas that have adhered to strict recommendations for control (Belasque et al.,331

2010). The disease entered the state in 2004 (Coletta-Filho et al., 2004). By 2012, incidence332

of disease was estimated as low as 1% for symptomatic trees across a third of the citrus333

acreage in the state (Bové, 2012). In comparison, in Florida, where the disease was first334

discovered in 2005, growers in a survey in 2015 were asked to estimate both the percentage335

of their citrus acres with at least one tree infected and the percentage of all their citrus trees336
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infected, with results indicating 90% and 80%, respectively (Singerman & Useche, 2016).337

This is despite the fact that our suitability metric estimates the northern regions of Florida338

to be highly suitable for HLB only 6 months of the year. While Brazil might have managed339

to control HLB successfully in some regions, the disease is still spreading throughout the340

country in those regions which have not been as proactive in their control (Belasque et al.,341

2010); a reminder that, without strict control measures, the disease can spread quickly and342

devastatingly, with 100% HLB incidence possible in infected groves (Bové, 2012).343

Within the northern hemisphere, we highlight the suitability of California and the Iberian344

peninsula for HLB transmission. Although California has had incursions of the disease, with345

the first occurring in 2012 (Kumagai et al., 2013), all have been in trees at residential346

properties and hence the citrus industry in California is currently free from disease (Byrne347

et al., 2018). Similarly, the Iberian peninsula has had no cases of HLB (Cocuzza et al., 2017).348

However, both regions have high citrus production and thus the potential consequences of349

incursion of HLB are high. They have similar suitability profiles with permissive suitability350

of HLB on average about 6 months of the year in both regions. While disease transmission351

might not be permissible all year round, trees can remain infected with HLB indefinitely352

unless they are rogued, thus allowing over-wintering of the disease during the seasons that353

ACP will not be active (Gottwald, 2010). Therefore, for these two regions to maintain354

HLB-free status, they need to deal with incursions promptly to ensure infected trees are355

removed. However, California has the added disadvantage that its neighboring country and356

many neighboring states have the disease or have ACP present (Torres-Pacheco et al., 2013).357

Indeed, the initial incursion of ACP into California is most likely to have occurred from358

Mexico (Bayles et al., 2017). This makes it harder to reduce the likelihood of HLB incursion359

as it is difficult to control the movement of vectors across borders. For the Iberian peninsula,360

it has been suggested that incursion of HLB is most likely through contaminated trade, such361

as infected plant materials (Cocuzza et al., 2017).362

Our analysis has been performed for the transmission of the CLas form of HLB by the363
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vector ACP and thus does not quantify the spread of CLaf HLB around the world from364

the African citrus psyllid (AfCP). Therefore, the suitability for HLB transmission might be365

underestimated in some areas of the world since AfCP has a different temperature profile366

than ACP, as it prefers higher elevations and lower temperatures and the two psyllids have367

not been found in the same locations (da Graça et al., 2016). In 2014, AfCP was first368

discovered in mainland Spain, alarming the citrus industry in Spain and Portugal (Cocuzza369

et al., 2017). Thus, it is possible that the Iberian peninsula is permissive for HLB for more370

months of the year than we have predicted if AfCP is the primary vector there.371

We have validated this model using spatially explicit records of HLB and ACP presence.372

Most areas with confirmed HLB or ACP are in regions our model predicts as permissive or373

highly suitable for most of the year, indicating that our temperature-only model can capture374

an important component of the environment that constrains the spatial distribution of HLB.375

Narouei-Khandan et al. (2016) used species distribution modeling with climatic variables to376

also create a HLB niche model, finding that annual precipitation levels, resulting in higher377

humidity, are the greatest predictor of HLB presence around the world. Unfortunately,378

there are not enough laboratory experiments assessing the effect of humidity on psyllid life379

history traits for us to include this in our model. Whilst our validation results indicate380

that we have successfully characterized a significant component of HLB transmission using381

temperature, our predictions could undoubtedly improve if we also included the effects of382

humidity. Our model produces similar results to the model of Narouei-Khandan et al. (2016),383

although it is difficult to make comparisons between number of permissive months (our384

model) versus the probability of occurrence (Narouei-Khandan et al. (2016) model). The385

Narouei-Khandan et al. (2016) model predicts greater areas in Australia suitable for HLB386

and ACP establishment than our model but only coastal areas of California are predicted387

to have a high probability of HLP and ACP occurrence with a low probability elsewhere in388

California. In contrast, our model predicts up to 7 months of permissive suitability across389

much of California.390
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Our method for creating the thermal niche is adaptable to other crop diseases and pests391

due to its strength of being built using mechanistic models. Spatially-explicit data of disease392

presence are typically used to build ecological niche models in other contexts (Gething et al.,393

2011; Peterson et al., 2005). A mechanistic model with additional on-the-ground validation394

is likely to predict more robustly how temperature constrains transmission than a correlative395

approach based on presence-only data. It also enables clean projections for future climate396

scenarios, as it is not limited by unquantifiable changes in land cover.397

Our use of two data sets for one parameter highlights how our understanding of a dis-398

ease/pest population can change significantly depending on the data we use to parameterize399

our models. The best way to avoid this and reduce our uncertainty is to use multiple data400

sources combined, but this requires multiple experiments from different laboratories estimat-401

ing the same parameter across a range of temperatures using the same empirical approaches.402

Often multiple experiments like this do not take place because of a perceived lack of novelty,403

but as we show here, they are potentially important to fully understand the impact of tem-404

perature on the persistence and establishment of vector-borne diseases and pest populations.405

As our mapping of suitability is performed at the pixel level, approximately 10km2 at the406

equator, this allows us to predict suitability to a very fine scale. Therefore, our map for HLB407

suitability can be used as a tool to determine surveillance and management strategies at a408

fine spatial scale. Furthermore, the general method is applicable for other vector-borne crop409

diseases or pests. Suitability does not indicate where incursions of the disease are likely to410

occur, but it does highlight the regions where it is most likely to establish and therefore where411

it is most necessary to avoid incursion. For example, for HLB in California, surveillance412

should be targeted mostly towards the southern part of the state (Fig 6). Furthermore, for413

those countries with disease present already, the suitability maps can indicate which regions414

should have different management aims: a strict management policy to keep incidence levels415

low or complete eradication in regions with lower suitability. A more focused surveillance416

and management strategy can save time, money and resources, which is necessary consider-417
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ing the economic costs currently involved in managing crop diseases (Challinor et al., 2014).418

São Paulo State, Brazil, demonstrates that it is possible to keep incidence of HLB low, even419

in a region which is highly suitable for HLB all 12 months of the year. Vera-Villagrán et al.420

(2016) estimated the economic benefits of implementing a Brazilian strategy in Mexico and421

found that it was cost-effective, assuming all growers abide by the regulations. The costs422

of implementing such a strict control strategy may be prohibitive, but it gives hope for the423

industry that control is possible, especially if implemented as soon as HLB is discovered424

(Belasque et al., 2010). Similarly, for other vector-borne diseases of crops and crop pests,425

successful management and control are possible if implemented quickly and extensively af-426

ter disease or pest emergence (Bruening et al., 2014; Enkerlin et al., 2015). Overall, our427

suitability maps provide an additional tool, alongside modeling of intervention strategies,428

cost-benefit analysis, experimental studies, development of disease-resistant trees and other429

inventions, in the fight against vector-borne crop diseases and pests.430
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